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University of California, Berkeley
Physics 110A, Section 2, Spring 2003 (Strovink)

PROBLEM SET 6

1.
A coaxial cable consists of an inner conductor
of radius a and an outer conductor of inner and
outer radii b and c respectively. A steady cur-
rent I flows along ẑ in the inner conductor and
along −ẑ in the outer conductor. Because the
current is steady, the volume current density is
uniform in both conductors. Find the magnetic
field everywhere.

2.
A toroid of inner radius a, outer radius b, height
h, and rectangular cross section is wound with
N finely pitched turns each carrying current I.
(a.)
Assuming that it lies along φ̂, find the magnetic
field everywhere.
(b.)
The inductance L of this toroid is ΦB/I, where
ΦB is N times the magnetic flux linked by one
turn. Show that L is proportional to h, to ln b/a,
and to N2.

3.
At 45◦ latitude, the magnetic field of the earth is
about half a gauss (0.5× 10−4 T). At the earth’s
surface, the magnetic field shape is similar to
that of an ideal dipole located at its center.
(a.)
Estimate the earth’s magnetic dipole moment.
(b.)
If this moment were due to an iron ball fully
magnetized to µ0M = 2 T, what would be the
ratio of the ball’s radius to the earth’s radius?

4.
A quadrupole magnet is one for which, within a
limited region,

�B = k0(x̂y + ŷx) ,

where k0 is a constant. Charged particles pass
through such a magnet nearly in the z direction,
very close to the z axis.

(a.)
Show that ∇ · �B = 0 and ∇× �B = 0. Therefore
the quadrupole-field region can be evacuated –
no current needs to flow within it.
(b.)
Show that if k0 > 0 the quadrupole magnet fo-
cusses the x (or y) motion of the particles, but
defocusses their y (or x) motion. Which pair of
directions is correct?
(Because of their focussing/defocussing proper-
ties, pairs of quadrupole magnets must be used
to achieve a (weaker) focus simultaneously in
both the x and y directions. This technique was
put to first practical use in the discovery of the
antiproton at the Berkeley Bevatron in 1956.)
(c.)
In a Panofsky quadrupole (an unusual type), the
field region lies within a volume of square cross
section |x| < b and |y| < b. Four current sheets
are located at

(1) x = b, |y| < b

(2) x = −b, |y| < b

(3) y = b, |x| < b

(4) y = −b, |x| < b .

Just outside the current sheets, an iron yoke is
placed. Because the permeability of the iron is
very high, any field component just outside each
current sheet that is parallel to the sheet (and the
yoke face) must essentially vanish. What surface
current densities �K1 thru �K4 must be supplied?
(Wolfgang Panofsky, who in 1951 collided with
U.C. Berkeley’s loyalty oath, moved to Stanford
and eventually founded SLAC.)
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5.
In lecture we generalized the Biot-Savart law
to consider a volume current density �J as the
source of a magnetic field:

4π
�B(�r)
µ0

=
∫
dτ ′

�J(�r ′)× (�r − �r ′)
|�r − �r ′|3 ,

assuming that �J vanishes at ∞ and the volume
integral extends over all space. We then showed
that this equation is equivalent to Ampère’s law

∇×
�B

µ0
= �J .

Using (but not rederiving) the above mathemat-
ics, show that if �B vanishes at ∞, the vector
potential �A can be obtained by integrating �B
over all space:

4π �A(�r) =
∫
dτ ′

�B(�r ′)× (�r − �r ′)
|�r − �r ′|3 .

6.+7.
When perfect cylindrical symmetry about the ẑ
axis is present, and in addition nothing varies
along z, we showed in class that a uniform mag-
netic field,

�B(�r) = B0ẑ ,

arises from the vector potential

�A(�r) = 1
2sB0φ̂ ,

where s and φ are the usual cylindrical coordi-
nates.
(a.)
At t = 0 a nonrelativistic particle of mass m
and charge e is born at the origin, with initial
momentum

�p(t = 0) = ŷp0 .

Determine its trajectory through the magnetic
field.
(b.)
Pick a couple of points on the trajectory in
addition to the origin. Show that

�r × (�p+ e �A) = 0

at all three points.

[This is no accident. The canonical momentum
�P for a free particle in a static electromagnetic
field is

�P = �p+ e �A .

The cylindrical symmetry of the problem about
the z axis requires the z component of the canon-
ical angular momentum �r× �P to be conserved.]
(c.)
The late Herbert L. Anderson (famous for build-
ing the Chicago Cyclotron and holding Fermi’s
notebook) is reputed always to have asked the
same graduate student oral exam problem:

“Consider a cyclotron magnet, cylindrically sym-
metric about the z axis, whose pair of circular
pole faces are located symmetrically about the
origin in planes of constant z. Outside the pole
faces, in those regions accessible to particles, the
field remains essentially cylindrically symmetric;
it drops off steeply with s so that both �B and
�A become negligible for s > s0. Neglect gravity.
From outside s0, a charged particle is launched
toward the origin along the x axis. After being
bent by the magnetic field, eventually the par-
ticle finds itself again outside s0. At that time,
from what point does the bent particle appear
to emanate? Prove your assertion.”

Try to pass Anderson’s exam.

8.
Calculate the magnetic flux

ΦB ≡
∫∫

�B · d�a

through a disk of radius b, coaxial with ẑ, cen-
tered a distance z above an ideal magnetic dipole
of moment �m = ẑm.

[Hint: Use the vector potential to avoid a messy
integral.] (Strangely, taking advantage of the
proportionality of ideal electric and magnetic
dipole fields away from the origin, this is the
easiest way to calculate the electric flux from an
electric dipole through the same disk.)


